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Institute of Mathematics
Czech Academy of Sciences

http://www.math.cas.cz/kubis/

4th Gathering of Prague Logicians 2016
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Classical Fraïssé theory

Definition
Let F be a class of finitely generated first-order structures. We say
that F is a Fraïssé class if

For every X ,Y ∈ F there is V ∈ F containing both X and Y .
For every embeddings f : Z → X , g : Z → Y with Z ,X ,Y ∈ F
there are embeddings f ′ : X →W , g′ : Y →W with f ′ ◦ f = g′ ◦ g
and W ∈ F . (Amalgamation Property)
F has at most countably many isomorphic types.
F is hereditary.
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Theorem (Fraïssé 1954)
Let F be a Fraïssé class. Then there is a unique countably generated
structure U satisfying

1 F is (up to isomorphisms) the class of all finitely generated
substructures of U.

2 For every X ⊆ Y in F , every embedding e : X → U extends to an
embedding f : Y → U.

Furthermore, U has the following properties:
(Universality) Assume X =

⋃
n∈ω Xn with Xn ∈ F , Xn ⊆ Xn+1,

n ∈ ω. Then X embeds into U.
(Homogeneity) Every isomorphism between finitely generated
substructures of U extends to an automorphism of U.

The structure U is called the Fraïssé limit of F .
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W.Kubiś (http://www.math.cas.cz/kubis/) Fraïssé categories 13 February 2016 4 / 39



Theorem (Fraïssé 1954)
Let F be a Fraïssé class. Then there is a unique countably generated
structure U satisfying

1 F is (up to isomorphisms) the class of all finitely generated
substructures of U.

2 For every X ⊆ Y in F , every embedding e : X → U extends to an
embedding f : Y → U.

Furthermore, U has the following properties:
(Universality) Assume X =

⋃
n∈ω Xn with Xn ∈ F , Xn ⊆ Xn+1,

n ∈ ω. Then X embeds into U.

(Homogeneity) Every isomorphism between finitely generated
substructures of U extends to an automorphism of U.

The structure U is called the Fraïssé limit of F .
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Examples
(Q,6)
The Rado (random) graph
The universal homogeneous partially ordered set
The universal homogeneous tournament.
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The setup

S is a category whose objects are called small.
L ⊇ S is a category whose objects are called big.

Assumptions on 〈S,L〉:
(A1) For every X ∈ Obj(L) there exists a sequence ~x : N→ S such that

X = lim~x .
(A2) For every X = lim~x ∈ Obj(L), y ∈ Obj(S), for every arrow

f : y → X there exists n such that f = x∞n ◦ f ′ for some f ′ ∈ S.
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Remark
For every category S there exists a category σS such that 〈S, σS〉
satisfies (A1), (A2).

The objects of σS are sequences (i.e., covariant functors) of type
N→ S.
The σS-arrows are natural transformations into subsequences.
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Definition
We say that S is directed if for every x , y ∈ Obj(S) there exist
z ∈ Obj(S) and S-arrows f : x → z, g : y → z.

x
f

)) z

y
g

55
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Definition
We say that S has the amalgamation property if for every S-arrows
f : z → x , g : z → y there exist S-arrows f ′ : x → w , g′ : y → w such
that the diagram

y
g′
// w

z

g
OO

f
// x

f ′

OO

is commutative.
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Domination

Definition
Let F be a subcategory of S. We say that F is dominating in S if the
following conditions are satisfied.

(D1) For every x ∈ Obj(S) there exists an S-arrow f : x → y such that
y ∈ Obj(F).

(D2) Given an S-arrow g with dom(g) ∈ Obj(F), there exists an
S-arrow h such that h ◦ g ∈ F.

(D1) x // y ∈ Obj(F)

(D2) •

g ��

h◦g∈F // •

•
h

??
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Main definition

Definition
We say that S is a Fraïssé category if

S is directed,
S has the amalgamation property,
S is dominated by a countable subcategory.
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Theorem (Droste & Göbel 1993, K. 2014)
Assume S is a Fraïssé category. Then there exists a unique, up to
isomorphism, object U ∈ Obj(L) with the following properties:

1 For every x ∈ Obj(S) there exists an L-arrow e : x → U.
2 For every e : x → U with x ∈ Obj(S), for every S-arrow f : x → y

there exists an L-arrow g : y → U such that e = g ◦ f .

x

f ��

e // U

y
g

55

Definition
We call U the Fraïssé limit of S and write U = Flim(S).
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Important features of Fraïssé limits

Theorem (Universality)
Let U = Flim(S). Then for every X ∈ Obj(L) there exists an L-arrow
e : X → U.

Theorem (Homogeneity)
Let U = Flim(S). For every S-arrow f : x → y, for every L-arrows
ex : x → U, ey : y → U there exists an automorphism h : U → U
satisfying h ◦ ex = ey ◦ f .

U h // U

x

ex

OO

f
// y

ey

OO
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Some examples

Example (Fraïssé)
Let S be a category of finitely generated models of a fixed first-order
language, L a suitable category of countably generated structures. If
S is hereditary, then Flim(S) is the same as the Fraïssé limit in the
model-theoretic sense.

Example (Irwin & Solecki 2006)
Let S be a class of finite nonempty structures of some fixed first-order
language. Turn it into a category, by saying that f is an arrow from x to
y if f : y → x is an epimorphism.
Then S is a Fraïssé category⇐⇒ S is a projective Fraïssé class in the
sense of Irwin & Solecki.
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Example
Let S be the category whose objects are nonempty countable sets and
define S(X ,Y ) to be the set of all surjections f : Y → X .
Then S is a Fraïssé category, yet the set S(N,N) is uncountable.

Claim
The Fraïssé limit of S can be identified as the set of irrational numbers
endowed with the natural topology.
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Example
Let S be the category of nonempty finite sets, where S(x , y) consists
of all surjections from y onto x .

Let L be the category of nonempty compact metrizable 0-dimensional
spaces with continuous surjections (again the arrows are reversed).
Then Flim(S) is the Cantor set 2ω.
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Definition
Fix a compact 0-dimensional metrizable space K 6= ∅. Define the
category SK as follows.

Objects are continuous mappings of the form f : K → s, where s is
a finite set.
Given two objects f : K → s, g : K → t , an SK -arrow from f to g is
a surjection r : t → s satisfying r ◦ g = f .

t

r

��

K

g
88

f
&& s
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Lemma
SK is a Fraïssé category.

Theorem
Let ϕ : K → 2ω be a continuous embedding such that ϕ[K ] is nowhere
dense in 2ω. Then ϕ is the Fraïssé limit of SK .

Corollary (folklore)
Every homeomorphism between closed nowhere dense subsets of 2ω

extends to an auto-homeomorphism of 2ω.
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Metric spaces

Example
Let S be the category of finite metric spaces with isometric
embeddings. Then S is directed and has the amalgamation property.
Unfortunately, S is not countably dominated.

On the other hand, there exists a unique complete separable metric
space U, called the Urysohn space, with the following properties:

1 U contains isometric copies of all finite metric spaces.
2 Every isometry between finite subsets of U extends to a bijective

isometry of U.
So, U behaves like the Fraïssé limit of S. How to deal with it?
Note that if L is the category of complete separable metric spaces then
the pair 〈S,L〉 satisfies (A1) but it fails (A2).
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The Banach-Mazur game

Definition
Fix U ∈ Obj(L). The Banach-Mazur game BM (S,U) is defined as
follows.
There are two players: Eve and Odd.

Eve starts the game by choosing u0 ∈ Obj(S).
Odd responds by choosing an S-arrow u1

0 : u0 → u1.
Eve responds by choosing an S-arrow u2

1 : u1 → u2.
And so on...

The result is a sequence ~u:

u0
u1

0 // u1
u2

1 // u2
u3

2 // u3 // · · ·

We say that Odd wins if U is isomorphic to lim~u. Otherwise Eve wins.
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Generic objects

Definition
We say that U ∈ Obj(L) is S-generic if Odd has a winning strategy in
the Banach-Mazur game BM (S,U).

Proposition
A generic object (if exists) is unique, up to isomorphism.

Proof.
Supposing there are two generic objects and Odd uses his strategy for
the first one, Eve can play using Odd’s strategy for the second one.
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Theorem
Assume S is a Fraïssé category and U = Flim(S). Then U is
S-generic.

The converse is false.

Example
Let S be the category of all finite connected cycle-free graphs with the
usual embeddings. Then S fails the amalgamation property.
On the other hand:

Odd has a winning strategy in BM (S,U), where U is the unique
connected countable cycle-free graph in which each vertex has infinite
degree.

Claim
S from the above example has a dominating Fraïssé subcategory.
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Question
Assume S is countable, U ∈ Obj(L), and Odd has a winning strategy
in BM (S,U).
Does S contain a subcategory with the amalgamation property?

Fact
Under the assumptions above, S is directed.

Proof.
Eve can start the game with an arbitrary S-object x , showing that
there is an L-arrow fx : x → U.
Taking another S-object y , we get fy : y → U.
Using (A2), we find m,n such that fx = u∞m ◦ gx and fy = u∞n ◦ gy for
some S-arrows gx , gy .
Without loss of generality, n = m, showing that S is directed.
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Metric spaces again

Theorem
Let S be the category of finite metric spaces and let L be the category
of complete separable metric spaces, both with isometric embeddings.
Then Odd has a winning strategy in BM (S,U), where U is the
Urysohn space.
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Banach spaces

Theorem
Let S be the category of finite-dimensional Banach spaces and let L
be the category of separable Banach spaces, both with linear isometric
embeddings.
Then there exists G ∈ Obj(L) such that Odd has a winning strategy in
BM (S,G).

The Banach space G is known, it is called the Gurariı̆ space.
It was constructed by Gurariı̆ in 1966.
Its uniqueness was proved by Lusky in 1976 using advanced tools.

Remark
The Gurariı̆ space G is not homogeneous, however every linear
isometry between its finite-dimensional subspaces can be
approximated by bijective linear isometries of G.
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A new setup

Let S, L be as before, except that we discard condition (A2).

New assumption:
L is enriched over the category of metric spaces with non-expansive
mappings.
This means that each hom-set L(X ,Y ) has a metric % = %X ,Y such that

1 %(f ◦ g1, f ◦ g2) 6 %(g1,g2)

2 %(f1 ◦ g, f2 ◦ g) 6 %(f1, f2)
whenever the compositions make sense.

(A2) If X = lim~x , where ~x is a sequence in S, then for every L-arrow
f : y → X , for every ε > 0 there exist n and an S-arrow f ′ : y → xn
such that %(x∞n ◦ f ′, f ) < ε.
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Domination revisited

Definition
Let F be a subcategory of S. We say that F is dominating in S if the
following conditions are satisfied.

(D1) For every x ∈ Obj(S) there exists an S-arrow f : x → y such that
y ∈ Obj(F).

(D2) Given an S-arrow g with dom(g) ∈ Obj(F), for every ε > 0 there
exist h ∈ S and f ∈ F such that

%(h ◦ g, f ) < ε.

(D1) x // y ∈ Obj(F)

(D2) •

g ��

f // •

•
h

??
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W.Kubiś (http://www.math.cas.cz/kubis/) Fraïssé categories 13 February 2016 28 / 39



Definition
We say that S has the almost amalgamation property if for every
S-arrows f : z → x , g : z → y , for every ε > 0 there are S-arrows
f ′ : x → w , g′ : y → w such that

%(f ′ ◦ f ,g′ ◦ g) < ε.

Definition
We say that S is a Fraïssé category if it is directed, countably
dominated and has the almost amalgamation property.

W.Kubiś (http://www.math.cas.cz/kubis/) Fraïssé categories 13 February 2016 29 / 39



Definition
We say that S has the almost amalgamation property if for every
S-arrows f : z → x , g : z → y , for every ε > 0 there are S-arrows
f ′ : x → w , g′ : y → w such that

%(f ′ ◦ f ,g′ ◦ g) < ε.

Definition
We say that S is a Fraïssé category if it is directed, countably
dominated and has the almost amalgamation property.
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Theorem
Let S be a Fraïssé category. There exists a unique, up to
isomorphism, L-object U satisfying

1 For every x ∈ Obj(S) there exists an L-arrow e : x → U.
2 For every e : x → U, f : x → y, for every ε > 0 there exists

g : y → U such that %(e,g ◦ f ) < ε.

We say that U is the Fraïssé limit of S.
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Theorem (Universality)
Let U be the Fraïssé limit of S. Then for every X ∈ Obj(L) there exists
an L-arrow e : X → U.

Theorem (Almost homogeneity)
Let U be the Fraïssé limit of S. Then for every S-arrow f : x → y, for
every L-arrows ex : x → U, ey : y → U, for every ε > 0 there exists an
automorphism h : U → U satisfying

%(h ◦ ex ,ey ◦ f ) < ε.

Remark
The Urysohn space is homogeneous with respect to finite sets, while
the Gurariı̆ space is not homogeneous with respect to
finite-dimensional spaces.
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Example
Let S be the category whose objects are closed intervals [0,n] (n ∈ N)
and arrows are non-expansive surjections. More precisely,
f ∈ S([0,n], [0,m]) iff f is a non-expansive surjection from [0,m] onto
[0,n].

Fact
S is a Fraïssé category, although it fails the amalgamation property.

L is the category of all nonempty chainable continua (a continuum = a
compact metrizable connected space).
The Fraïssé limit of S is the pseudo-arc.
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Bad news

Fact
The category of finite metric spaces with isometric embeddings is not
countably dominated.

Fact
The category of finite-dimensional Banach spaces with linear isometric
embeddings is not countably dominated.
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Proposition
A separable Banach space G is linearly isometric to the Gurariı̆ space
if and only if
(G) For every finite-dimensional spaces X ⊆ Y, for every linear

isometric embedding e : X → G, for every ε > 0 there exists an
ε-isometric embedding f : Y → G such that ‖f � X − e‖ < ε.
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Measured categories

Definition
A measure on a category K is a function µ : K→ [0,+∞] satisfying the
following conditions:

(M1) µ(idx) = 0 for every object x .
(M2) µ(f ◦ g) 6 µ(f ) + µ(g) whenever f ◦ g is defined.
(M3) µ(g) 6 µ(f ◦ g) + µ(f ) whenever f ◦ g is defined.
A pair 〈K, µ〉 will be called a measured category.

•

g
&&

f◦g // •

•
f

88
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Example
Let K be the category of metric spaces with non-expansive mappings.
Then

µ(f ) = log Lip(f−1)

defines a measure on K.

Example
Let K = 〈X ,X × X 〉 be a quasi-ordered set, treated as a category such
that K(x , y) = {〈x , y〉} for every x , y ∈ X . Then a measure on 〈X ,6〉 is
a pseudo-metric (we allow 0 for distinct points).
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We assume that S is a measured category enriched over metric
spaces.

A new axiom
For every ε > 0 there is δ > 0 such that whenever f : x → y satisfies
µ(f ) < δ then there exist i : x → v , j : y → v such that µ(i) = µ(j) = 0
and %(i , j ◦ f ) < ε.

x

f
&&

i // v

y
j

88

Proposition
The category of finite-dimensional Banach spaces satisfies this axiom
(with δ = ε).
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W.Kubiś (http://www.math.cas.cz/kubis/) Fraïssé categories 13 February 2016 37 / 39



After adapting the other assumptions and axioms, we obtain the final
notion of a Fraïssé category.

Theorem
The Urysohn space is the Fraïssé limit of the category of finite metric
spaces.

Theorem
The Gurariı̆ space is the Fraïssé limit of the category of
finite-dimensional Banach spaces.
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