Recent developments in the theory of universal homogeneous structures

Wiesław Kubiś

Institute of Mathematics Czech Academy of Sciences http://www.math.cas.cz/kubis/

4th Gathering of Prague Logicians 2016

4 3 5 4 3

< 6 b

Motivations

Classical Fraïssé theory

2

イロト イヨト イヨト イヨト

Motivations

- Classical Fraïssé theory
- More recent works:
 - M. DROSTE, R. GÖBEL, A categorical theorem on universal objects and its application in abelian group theory and computer science, Proceedings of the International Conference on Algebra, Part 3 (Novosibirsk, 1989), 49–74, Contemp. Math., 131, Part 3, Amer. Math. Soc., 1992.
 - T. IRWIN, S. SOLECKI, Projective Fraïssé limits and the pseudo-arc, Trans. Amer. Math. Soc. 358, no. 7 (2006) 3077–3096.
 - W. KUBIŚ, S. SOLECKI, *A proof of uniqueness of the Gurarii space*, Israel J. Math. **195** (2013) 449–456.
 - I. BEN YAACOV, Fraïssé limits of metric structures, Journal of Symbolic Logic 80 (2015), no. 1, 100–115.

Definition

Let \mathscr{F} be a class of finitely generated first-order structures. We say that \mathscr{F} is a Fraïssé class if

< ロ > < 同 > < 回 > < 回 >

Definition

Let \mathscr{F} be a class of finitely generated first-order structures. We say that \mathscr{F} is a Fraïssé class if

• For every $X, Y \in \mathscr{F}$ there is $V \in \mathscr{F}$ containing both X and Y.

Definition

Let \mathscr{F} be a class of finitely generated first-order structures. We say that \mathscr{F} is a Fraïssé class if

- For every $X, Y \in \mathscr{F}$ there is $V \in \mathscr{F}$ containing both X and Y.
- For every embeddings f: Z → X, g: Z → Y with Z, X, Y ∈ ℱ there are embeddings f': X → W, g': Y → W with f' ∘ f = g' ∘ g and W ∈ ℱ. (Amalgamation Property)

A D b 4 A b

Definition

Let \mathscr{F} be a class of finitely generated first-order structures. We say that \mathscr{F} is a Fraïssé class if

- For every $X, Y \in \mathscr{F}$ there is $V \in \mathscr{F}$ containing both X and Y.
- For every embeddings f: Z → X, g: Z → Y with Z, X, Y ∈ ℱ there are embeddings f': X → W, g': Y → W with f' ∘ f = g' ∘ g and W ∈ ℱ. (Amalgamation Property)
- F has at most countably many isomorphic types.

4 3 5 4 3 5 5

A D b 4 A b

Definition

Let \mathscr{F} be a class of finitely generated first-order structures. We say that \mathscr{F} is a Fraïssé class if

- For every $X, Y \in \mathscr{F}$ there is $V \in \mathscr{F}$ containing both X and Y.
- For every embeddings f: Z → X, g: Z → Y with Z, X, Y ∈ ℱ there are embeddings f': X → W, g': Y → W with f' ∘ f = g' ∘ g and W ∈ ℱ. (Amalgamation Property)
- \mathscr{F} has at most countably many isomorphic types.
- ℱ is hereditary.

\[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[

Let \mathscr{F} be a Fraïssé class. Then there is a unique countably generated structure U satisfying

Let \mathscr{F} be a Fraïssé class. Then there is a unique countably generated structure U satisfying

If is (up to isomorphisms) the class of all finitely generated substructures of U.

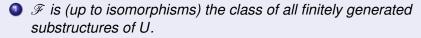
Let \mathscr{F} be a Fraïssé class. Then there is a unique countably generated structure U satisfying

- *F* is (up to isomorphisms) the class of all finitely generated substructures of U.
- Por every X ⊆ Y in F, every embedding e: X → U extends to an embedding f: Y → U.

A B F A B F

Image: Image:

Let \mathscr{F} be a Fraïssé class. Then there is a unique countably generated structure U satisfying



Por every X ⊆ Y in F, every embedding e: X → U extends to an embedding f: Y → U.

Furthermore, U has the following properties:

• (Universality) Assume $X = \bigcup_{n \in \omega} X_n$ with $X_n \in \mathscr{F}$, $X_n \subseteq X_{n+1}$, $n \in \omega$. Then X embeds into U.

Let \mathscr{F} be a Fraïssé class. Then there is a unique countably generated structure U satisfying

- *F* is (up to isomorphisms) the class of all finitely generated substructures of U.
- Por every X ⊆ Y in F, every embedding e: X → U extends to an embedding f: Y → U.

Furthermore, U has the following properties:

- (Universality) Assume $X = \bigcup_{n \in \omega} X_n$ with $X_n \in \mathscr{F}$, $X_n \subseteq X_{n+1}$, $n \in \omega$. Then X embeds into U.
- (Homogeneity) Every isomorphism between finitely generated substructures of U extends to an automorphism of U.

The structure U is called the Fraissé limit of \mathcal{F} .

イロト イポト イヨト イヨト

Examples

- (\mathbb{Q},\leqslant)
- The Rado (random) graph
- The universal homogeneous partially ordered set
- The universal homogeneous tournament.

4 3 > 4 3

< 6 b

The setup

- $\bullet \ \mathfrak{S}$ is a category whose objects are called small.
- $\mathfrak{L} \supseteq \mathfrak{S}$ is a category whose objects are called big.

The Sec. 74

< 6 k

The setup

- S is a category whose objects are called small.
- $\mathfrak{L} \supseteq \mathfrak{S}$ is a category whose objects are called big.

Assumptions on $\langle \mathfrak{S}, \mathfrak{L} \rangle$:

(A1) For every $X \in \text{Obj}(\mathfrak{L})$ there exists a sequence $\vec{x} : \mathbb{N} \to \mathfrak{S}$ such that $X = \lim \vec{x}$.

4 3 > 4 3

< 🗇 🕨

The setup

- S is a category whose objects are called small.
- $\mathfrak{L} \supseteq \mathfrak{S}$ is a category whose objects are called big.

Assumptions on $\langle \mathfrak{S}, \mathfrak{L} \rangle$:

- (A1) For every $X \in \text{Obj}(\mathfrak{L})$ there exists a sequence $\vec{x} : \mathbb{N} \to \mathfrak{S}$ such that $X = \lim \vec{x}$.
- (A2) For every $X = \lim \vec{x} \in \text{Obj}(\mathfrak{L}), y \in \text{Obj}(\mathfrak{S})$, for every arrow $f: y \to X$ there exists *n* such that $f = x_n^{\infty} \circ f'$ for some $f' \in \mathfrak{S}$.

★ ∃ > < ∃ >

< 🗇 🕨

Remark

For every category \mathfrak{S} there exists a category $\sigma\mathfrak{S}$ such that $\langle\mathfrak{S}, \sigma\mathfrak{S}\rangle$ satisfies (A1), (A2).

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Remark

For every category \mathfrak{S} there exists a category $\sigma\mathfrak{S}$ such that $\langle\mathfrak{S}, \sigma\mathfrak{S}\rangle$ satisfies (A1), (A2).

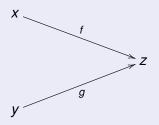
- The objects of $\sigma \mathfrak{S}$ are sequences (i.e., covariant functors) of type $\mathbb{N} \to \mathfrak{S}$.
- The $\sigma \mathfrak{S}$ -arrows are natural transformations into subsequences.

4 3 5 4 3 5 5

< 6 b

Definition

We say that \mathfrak{S} is directed if for every $x, y \in \text{Obj}(\mathfrak{S})$ there exist $z \in \text{Obj}(\mathfrak{S})$ and \mathfrak{S} -arrows $f: x \to z, g: y \to z$.



< ロ > < 同 > < 回 > < 回 >

Definition

We say that \mathfrak{S} has the amalgamation property if for every \mathfrak{S} -arrows $f: z \to x, g: z \to y$ there exist \mathfrak{S} -arrows $f': x \to w, g': y \to w$ such that the diagram

is commutative.

W.Kubiś (http://www.math.cas.cz/kubis/)

2

イロト イヨト イヨト イヨト

Definition

Let \mathfrak{F} be a subcategory of \mathfrak{S} . We say that \mathfrak{F} is dominating in \mathfrak{S} if the following conditions are satisfied.

Definition

Let \mathfrak{F} be a subcategory of \mathfrak{S} . We say that \mathfrak{F} is dominating in \mathfrak{S} if the following conditions are satisfied.

(D1) For every $x \in Obj(\mathfrak{S})$ there exists an \mathfrak{S} -arrow $f: x \to y$ such that $y \in Obj(\mathfrak{F})$.

Definition

Let \mathfrak{F} be a subcategory of \mathfrak{S} . We say that \mathfrak{F} is dominating in \mathfrak{S} if the following conditions are satisfied.

(D1) For every $x \in Obj(\mathfrak{S})$ there exists an \mathfrak{S} -arrow $f: x \to y$ such that $y \in Obj(\mathfrak{F})$.

(D2) Given an \mathfrak{S} -arrow g with dom $(g) \in Obj(\mathfrak{F})$, there exists an \mathfrak{S} -arrow h such that $h \circ g \in \mathfrak{F}$.

(D1)
$$x \longrightarrow y \in Obj(\mathfrak{F})$$

(D2) $\bullet \qquad h \circ g \in \mathfrak{F}$

(B)

A D b 4 A b

Main definition

Definition

We say that S is a Fraïssé category if

- S is directed,
- S has the amalgamation property,
- \mathfrak{S} is dominated by a countable subcategory.

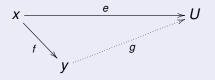
Assume \mathfrak{S} is a Fraïssé category. Then there exists a unique, up to isomorphism, object $U \in Obj(\mathfrak{L})$ with the following properties:

Assume \mathfrak{S} is a Fraïssé category. Then there exists a unique, up to isomorphism, object $U \in Obj(\mathfrak{L})$ with the following properties:

() For every $x \in Obj(\mathfrak{S})$ there exists an \mathfrak{L} -arrow $e: x \to U$.

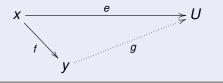
Assume \mathfrak{S} is a Fraïssé category. Then there exists a unique, up to isomorphism, object $U \in Obj(\mathfrak{L})$ with the following properties:

- **1** For every $x \in Obj(\mathfrak{S})$ there exists an \mathfrak{L} -arrow $e: x \to U$.
- Por every e: x → U with x ∈ Obj(S), for every S-arrow f: x → y there exists an L-arrow g: y → U such that e = g ∘ f.



Assume \mathfrak{S} is a Fraïssé category. Then there exists a unique, up to isomorphism, object $U \in Obj(\mathfrak{L})$ with the following properties:

- **1** For every $x \in Obj(\mathfrak{S})$ there exists an \mathfrak{L} -arrow $e: x \to U$.
- ② For every $e: x \to U$ with $x \in Obj(\mathfrak{S})$, for every \mathfrak{S} -arrow $f: x \to y$ there exists an \mathfrak{L} -arrow $g: y \to U$ such that $e = g \circ f$.



Definition

We call *U* the Fraïssé limit of \mathfrak{S} and write $U = \text{Flim}(\mathfrak{S})$.

A B F A B F

Important features of Fraïssé limits

Theorem (Universality)

Let $U = \text{Flim}(\mathfrak{S})$. Then for every $X \in \text{Obj}(\mathfrak{L})$ there exists an \mathfrak{L} -arrow $e \colon X \to U$.

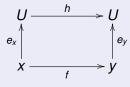
Important features of Fraïssé limits

Theorem (Universality)

Let $U = \text{Flim}(\mathfrak{S})$. Then for every $X \in \text{Obj}(\mathfrak{L})$ there exists an \mathfrak{L} -arrow $e \colon X \to U$.

Theorem (Homogeneity)

Let $U = \text{Flim}(\mathfrak{S})$. For every \mathfrak{S} -arrow $f : x \to y$, for every \mathfrak{L} -arrows $e_x : x \to U$, $e_y : y \to U$ there exists an automorphism $h : U \to U$ satisfying $h \circ e_x = e_y \circ f$.



< ロ > < 同 > < 回 > < 回 >

Some examples

Example (Fraïssé)

Let \mathfrak{S} be a category of finitely generated models of a fixed first-order language, \mathfrak{L} a suitable category of countably generated structures. If \mathfrak{S} is hereditary, then $\mathsf{Flim}(\mathfrak{S})$ is the same as the Fraïssé limit in the model-theoretic sense.

EN 4 EN

Some examples

Example (Fraïssé)

Let \mathfrak{S} be a category of finitely generated models of a fixed first-order language, \mathfrak{L} a suitable category of countably generated structures. If \mathfrak{S} is hereditary, then $\mathsf{Flim}(\mathfrak{S})$ is the same as the Fraïssé limit in the model-theoretic sense.

Example (Irwin & Solecki 2006)

Let \mathfrak{S} be a class of finite nonempty structures of some fixed first-order language. Turn it into a category, by saying that *f* is an arrow from *x* to *y* if *f* : *y* \rightarrow *x* is an epimorphism.

Then \mathfrak{S} is a Fraïssé category $\iff \mathfrak{S}$ is a projective Fraïssé class in the sense of Irwin & Solecki.

Example

Let \mathfrak{S} be the category whose objects are nonempty countable sets and define $\mathfrak{S}(X, Y)$ to be the set of all surjections $f \colon Y \to X$. Then \mathfrak{S} is a Fraïssé category, yet the set $\mathfrak{S}(\mathbb{N}, \mathbb{N})$ is uncountable.

∃ ► < ∃ ►</p>

Example

Let \mathfrak{S} be the category whose objects are nonempty countable sets and define $\mathfrak{S}(X, Y)$ to be the set of all surjections $f \colon Y \to X$. Then \mathfrak{S} is a Fraïssé category, yet the set $\mathfrak{S}(\mathbb{N}, \mathbb{N})$ is uncountable.

Claim

The Fraïssé limit of \mathfrak{S} can be identified as the set of irrational numbers endowed with the natural topology.

3 + 4 = +

Example

Let \mathfrak{S} be the category of nonempty finite sets, where $\mathfrak{S}(x, y)$ consists of all surjections from *y* onto *x*.

Example

Let \mathfrak{S} be the category of nonempty finite sets, where $\mathfrak{S}(x, y)$ consists of all surjections from *y* onto *x*.

Let \mathfrak{L} be the category of nonempty compact metrizable 0-dimensional spaces with continuous surjections (again the arrows are reversed).

Example

Let \mathfrak{S} be the category of nonempty finite sets, where $\mathfrak{S}(x, y)$ consists of all surjections from *y* onto *x*.

Let \mathfrak{L} be the category of nonempty compact metrizable 0-dimensional spaces with continuous surjections (again the arrows are reversed). Then $Flim(\mathfrak{S})$ is the Cantor set 2^{ω} .

A B F A B F

Definition

Fix a compact 0-dimensional metrizable space $K \neq \emptyset$. Define the category \mathfrak{S}_K as follows.

э

(日)

Definition

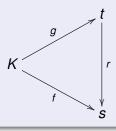
Fix a compact 0-dimensional metrizable space $K \neq \emptyset$. Define the category \mathfrak{S}_K as follows.

Objects are continuous mappings of the form *f* : *K* → *s*, where *s* is a finite set.

Definition

Fix a compact 0-dimensional metrizable space $K \neq \emptyset$. Define the category \mathfrak{S}_K as follows.

- Objects are continuous mappings of the form *f*: *K* → *s*, where *s* is a finite set.
- Given two objects f: K → s, g: K → t, an 𝔅_K-arrow from f to g is a surjection r: t → s satisfying r ∘ g = f.



3 + 4 = +

Lemma

 \mathfrak{S}_K is a Fraïssé category.

æ

イロト イヨト イヨト イヨト

Lemma

 $\mathfrak{S}_{\mathcal{K}}$ is a Fraïssé category.

Theorem

Let $\varphi \colon K \to 2^{\omega}$ be a continuous embedding such that $\varphi[K]$ is nowhere dense in 2^{ω} . Then φ is the Fraïssé limit of \mathfrak{S}_{K} .

< 日 > < 同 > < 回 > < 回 > < □ > <

Lemma

 $\mathfrak{S}_{\mathcal{K}}$ is a Fraïssé category.

Theorem

Let $\varphi \colon K \to 2^{\omega}$ be a continuous embedding such that $\varphi[K]$ is nowhere dense in 2^{ω} . Then φ is the Fraïssé limit of \mathfrak{S}_{K} .

Corollary (folklore)

Every homeomorphism between closed nowhere dense subsets of 2^{ω} extends to an auto-homeomorphism of 2^{ω} .

3

Example

Let \mathfrak{S} be the category of finite metric spaces with isometric embeddings. Then \mathfrak{S} is directed and has the amalgamation property. Unfortunately, \mathfrak{S} is not countably dominated.

Example

Let \mathfrak{S} be the category of finite metric spaces with isometric embeddings. Then \mathfrak{S} is directed and has the amalgamation property. Unfortunately, \mathfrak{S} is not countably dominated.

On the other hand, there exists a unique complete separable metric space \mathbb{U} , called the Urysohn space, with the following properties:

A B F A B F

Example

Let \mathfrak{S} be the category of finite metric spaces with isometric embeddings. Then \mathfrak{S} is directed and has the amalgamation property. Unfortunately, \mathfrak{S} is not countably dominated.

On the other hand, there exists a unique complete separable metric space \mathbb{U} , called the Urysohn space, with the following properties:

U contains isometric copies of all finite metric spaces.

A B F A B F

Example

Let \mathfrak{S} be the category of finite metric spaces with isometric embeddings. Then \mathfrak{S} is directed and has the amalgamation property. Unfortunately, \mathfrak{S} is not countably dominated.

On the other hand, there exists a unique complete separable metric space \mathbb{U} , called the Urysohn space, with the following properties:

- U contains isometric copies of all finite metric spaces.
- ② Every isometry between finite subsets of U extends to a bijective isometry of U.

Example

Let \mathfrak{S} be the category of finite metric spaces with isometric embeddings. Then \mathfrak{S} is directed and has the amalgamation property. Unfortunately, \mathfrak{S} is not countably dominated.

On the other hand, there exists a unique complete separable metric space \mathbb{U} , called the Urysohn space, with the following properties:

- U contains isometric copies of all finite metric spaces.
- Every isometry between finite subsets of U extends to a bijective isometry of U.

So, \mathbb{U} behaves like the Fraïssé limit of \mathfrak{S} . How to deal with it? Note that if \mathfrak{L} is the category of complete separable metric spaces then the pair $\langle \mathfrak{S}, \mathfrak{L} \rangle$ satisfies (A1) but it fails (A2).

W.Kubiś (http://www.math.cas.cz/kubis/)

Fraïssé categories

13 February 2016 20 / 39

æ

Definition

Fix $U \in \text{Obj}(\mathfrak{L})$. The Banach-Mazur game BM (\mathfrak{S} , U) is defined as follows.

There are two players: Eve and Odd.

< ロ > < 同 > < 回 > < 回 >

Definition

Fix $U \in \text{Obj}(\mathfrak{L})$. The Banach-Mazur game BM (\mathfrak{S} , U) is defined as follows.

There are two players: Eve and Odd.

• Eve starts the game by choosing $u_0 \in Obj(\mathfrak{S})$.

3 + 4 = +

Definition

Fix $U \in \text{Obj}(\mathfrak{L})$. The Banach-Mazur game BM (\mathfrak{S} , U) is defined as follows.

There are two players: Eve and Odd.

- Eve starts the game by choosing $u_0 \in Obj(\mathfrak{S})$.
- Odd responds by choosing an \mathfrak{S} -arrow $u_0^1 \colon u_0 \to u_1$.

3 → 4 3

Definition

Fix $U \in \text{Obj}(\mathfrak{L})$. The Banach-Mazur game BM (\mathfrak{S}, U) is defined as follows.

There are two players: Eve and Odd.

- Eve starts the game by choosing $u_0 \in Obj(\mathfrak{S})$.
- Odd responds by choosing an \mathfrak{S} -arrow $u_0^1 \colon u_0 \to u_1$.
- Eve responds by choosing an \mathfrak{S} -arrow $u_1^2 \colon u_1 \to u_2$.

Definition

Fix $U \in \text{Obj}(\mathfrak{L})$. The Banach-Mazur game BM (\mathfrak{S}, U) is defined as follows.

There are two players: Eve and Odd.

- Eve starts the game by choosing $u_0 \in Obj(\mathfrak{S})$.
- Odd responds by choosing an \mathfrak{S} -arrow $u_0^1 \colon u_0 \to u_1$.
- Eve responds by choosing an \mathfrak{S} -arrow $u_1^2 \colon u_1 \to u_2$.
- And so on...

The result is a sequence \vec{u} :

$$u_0 \xrightarrow{u_0^1} u_1 \xrightarrow{u_1^2} u_2 \xrightarrow{u_2^3} u_3 \longrightarrow \cdots$$

We say that Odd wins if U is isomorphic to $\lim \vec{u}$. Otherwise Eve wins.

3

Generic objects

Definition

We say that $U \in Obj(\mathfrak{L})$ is \mathfrak{S} -generic if Odd has a winning strategy in the Banach-Mazur game BM (\mathfrak{S} , U).

3 > 4 3

< 17 ▶

Generic objects

Definition

We say that $U \in Obj(\mathfrak{L})$ is \mathfrak{S} -generic if Odd has a winning strategy in the Banach-Mazur game BM (\mathfrak{S}, U).

Proposition

A generic object (if exists) is unique, up to isomorphism.

Generic objects

Definition

We say that $U \in Obj(\mathfrak{L})$ is \mathfrak{S} -generic if Odd has a winning strategy in the Banach-Mazur game BM (\mathfrak{S}, U).

Proposition

A generic object (if exists) is unique, up to isomorphism.

Proof.

Supposing there are two generic objects and Odd uses his strategy for the first one, Eve can play using Odd's strategy for the second one. \Box

Assume \mathfrak{S} is a Fraïssé category and $U = \text{Flim}(\mathfrak{S})$. Then U is \mathfrak{S} -generic.

э

イロト イポト イヨト イヨト

Assume \mathfrak{S} is a Fraïssé category and $U = \text{Flim}(\mathfrak{S})$. Then U is \mathfrak{S} -generic.

The converse is false.

Example

Let \mathfrak{S} be the category of all finite connected cycle-free graphs with the usual embeddings. Then \mathfrak{S} fails the amalgamation property. On the other hand:

3

Assume \mathfrak{S} is a Fraïssé category and $U = \text{Flim}(\mathfrak{S})$. Then U is \mathfrak{S} -generic.

The converse is false.

Example

Let \mathfrak{S} be the category of all finite connected cycle-free graphs with the usual embeddings. Then \mathfrak{S} fails the amalgamation property. On the other hand:

Odd has a winning strategy in BM (\mathfrak{S} , U), where U is the unique connected countable cycle-free graph in which each vertex has infinite degree.

Assume \mathfrak{S} is a Fraïssé category and $U = \text{Flim}(\mathfrak{S})$. Then U is \mathfrak{S} -generic.

The converse is false.

Example

Let \mathfrak{S} be the category of all finite connected cycle-free graphs with the usual embeddings. Then \mathfrak{S} fails the amalgamation property. On the other hand:

Odd has a winning strategy in BM (\mathfrak{S} , U), where U is the unique connected countable cycle-free graph in which each vertex has infinite degree.

Claim

 \mathfrak{S} from the above example has a dominating Fraïssé subcategory.

Question

Assume \mathfrak{S} is countable, $U \in Obj(\mathfrak{L})$, and Odd has a winning strategy in BM (\mathfrak{S}, U).

Does & contain a subcategory with the amalgamation property?

3

Question

Assume \mathfrak{S} is countable, $U \in Obj(\mathfrak{L})$, and Odd has a winning strategy in BM (\mathfrak{S} , U).

Does \mathfrak{S} contain a subcategory with the amalgamation property?

Fact

Under the assumptions above, \mathfrak{S} is directed.

Question

Assume \mathfrak{S} is countable, $U \in Obj(\mathfrak{L})$, and Odd has a winning strategy in BM (\mathfrak{S} , U).

Does \mathfrak{S} contain a subcategory with the amalgamation property?

Fact

Under the assumptions above, \mathfrak{S} is directed.

Proof.

Eve can start the game with an arbitrary \mathfrak{S} -object x, showing that there is an \mathfrak{L} -arrow $f_x \colon x \to U$. Taking another \mathfrak{S} -object y, we get $f_y \colon y \to U$. Using (A2), we find m, n such that $f_x = u_m^{\infty} \circ g_x$ and $f_y = u_n^{\infty} \circ g_y$ for some \mathfrak{S} -arrows g_x , g_y . Without loss of generality, n = m, showing that \mathfrak{S} is directed.

Metric spaces again

Theorem

Let \mathfrak{S} be the category of finite metric spaces and let \mathfrak{L} be the category of complete separable metric spaces, both with isometric embeddings. Then Odd has a winning strategy in BM (\mathfrak{S}, \mathbb{U}), where \mathbb{U} is the Urysohn space.

3 → 4 3

Banach spaces

Theorem

Let \mathfrak{S} be the category of finite-dimensional Banach spaces and let \mathfrak{L} be the category of separable Banach spaces, both with linear isometric embeddings.

Then there exists $\mathbb{G} \in Obj(\mathfrak{L})$ such that Odd has a winning strategy in $BM(\mathfrak{S}, \mathbb{G})$.

Banach spaces

Theorem

Let \mathfrak{S} be the category of finite-dimensional Banach spaces and let \mathfrak{L} be the category of separable Banach spaces, both with linear isometric embeddings.

Then there exists $\mathbb{G} \in Obj(\mathfrak{L})$ such that Odd has a winning strategy in $BM(\mathfrak{S}, \mathbb{G})$.

The Banach space $\mathbb G$ is known, it is called the Gurariı̆ space. It was constructed by Gurariı̆ in 1966.

Its uniqueness was proved by Lusky in 1976 using advanced tools.

(B)

Banach spaces

Theorem

Let \mathfrak{S} be the category of finite-dimensional Banach spaces and let \mathfrak{L} be the category of separable Banach spaces, both with linear isometric embeddings.

Then there exists $\mathbb{G} \in Obj(\mathfrak{L})$ such that Odd has a winning strategy in $BM(\mathfrak{S}, \mathbb{G})$.

The Banach space \mathbb{G} is known, it is called the Gurariĭ space. It was constructed by Gurariĭ in 1966.

Its uniqueness was proved by Lusky in 1976 using advanced tools.

Remark

The Gurariĭ space \mathbb{G} is not homogeneous, however every linear isometry between its finite-dimensional subspaces can be approximated by bijective linear isometries of \mathbb{G} .

< ロ > < 同 > < 回 > < 回 >

W.Kubiś (http://www.math.cas.cz/kubis/)

Fraïssé categories

13 February 2016 26 / 39

æ

<ロ> <四> <ヨ> <ヨ>

A new setup

W.Kubiś (http://www.math.cas.cz/kubis/)

2

イロト イロト イヨト イヨト

Let \mathfrak{S} , \mathfrak{L} be as before, except that we discard condition (A2).

Let \mathfrak{S} , \mathfrak{L} be as before, except that we discard condition (A2).

New assumption:

 $\ensuremath{\mathfrak{L}}$ is enriched over the category of metric spaces with non-expansive mappings.

Let \mathfrak{S} , \mathfrak{L} be as before, except that we discard condition (A2).

New assumption:

 $\ensuremath{\mathfrak{L}}$ is enriched over the category of metric spaces with non-expansive mappings.

This means that each hom-set $\mathfrak{L}(X, Y)$ has a metric $\varrho = \varrho_{X,Y}$ such that

$$2 \varrho(f_1 \circ g, f_2 \circ g) \leqslant \varrho(f_1, f_2)$$

whenever the compositions make sense.

Let \mathfrak{S} , \mathfrak{L} be as before, except that we discard condition (A2).

New assumption:

 $\ensuremath{\mathfrak{L}}$ is enriched over the category of metric spaces with non-expansive mappings.

This means that each hom-set $\mathfrak{L}(X, Y)$ has a metric $\varrho = \varrho_{X,Y}$ such that

2
$$\varrho(f_1 \circ g, f_2 \circ g) \leq \varrho(f_1, f_2)$$

whenever the compositions make sense.

(A2) If $X = \lim \vec{x}$, where \vec{x} is a sequence in \mathfrak{S} , then for every \mathfrak{L} -arrow $f: y \to X$, for every $\varepsilon > 0$ there exist *n* and an \mathfrak{S} -arrow $f': y \to x_n$ such that $\varrho(x_n^{\infty} \circ f', f) < \varepsilon$.

Domination revisited

Definition

Let \mathfrak{F} be a subcategory of \mathfrak{S} . We say that \mathfrak{F} is dominating in \mathfrak{S} if the following conditions are satisfied.

(D1) For every $x \in Obj(\mathfrak{S})$ there exists an \mathfrak{S} -arrow $f: x \to y$ such that $y \in Obj(\mathfrak{F})$.

(D2) Given an 𝔅-arrow g with dom(g) ∈ Obj(𝔅), for every ε > 0 there exist h ∈ 𝔅 and f ∈ 𝔅 such that

 $\varrho(h \circ g, f) < \varepsilon.$

Domination revisited

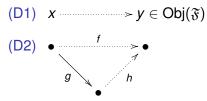
Definition

Let \mathfrak{F} be a subcategory of \mathfrak{S} . We say that \mathfrak{F} is dominating in \mathfrak{S} if the following conditions are satisfied.

(D1) For every $x \in Obj(\mathfrak{S})$ there exists an \mathfrak{S} -arrow $f: x \to y$ such that $y \in Obj(\mathfrak{F})$.

(D2) Given an 𝔅-arrow g with dom(g) ∈ Obj(𝔅), for every ε > 0 there exist h ∈ 𝔅 and f ∈ 𝔅 such that

$$\varrho(h\circ g,f)<\varepsilon.$$



(B)

Definition

We say that \mathfrak{S} has the almost amalgamation property if for every \mathfrak{S} -arrows $f: z \to x, g: z \to y$, for every $\varepsilon > 0$ there are \mathfrak{S} -arrows $f': x \to w, g': y \to w$ such that

 $\varrho(f' \circ f, g' \circ g) < \varepsilon.$

Definition

We say that \mathfrak{S} has the almost amalgamation property if for every \mathfrak{S} -arrows $f: z \to x, g: z \to y$, for every $\varepsilon > 0$ there are \mathfrak{S} -arrows $f': x \to w, g': y \to w$ such that

 $\varrho(f'\circ f,g'\circ g)<\varepsilon.$

Definition

We say that \mathfrak{S} is a Fraïssé category if it is directed, countably dominated and has the almost amalgamation property.

Theorem

Let \mathfrak{S} be a Fraïssé category. There exists a unique, up to isomorphism, \mathfrak{L} -object U satisfying

- For every $x \in Obj(\mathfrak{S})$ there exists an \mathfrak{L} -arrow $e: x \to U$.
- Por every e: x → U, f: x → y, for every ε > 0 there exists g: y → U such that ρ(e, g ∘ f) < ε.</p>

We say that U is the Fraïssé limit of \mathfrak{S} .

モトイモト

Theorem (Universality)

Let U be the Fraïssé limit of \mathfrak{S} . Then for every $X \in Obj(\mathfrak{L})$ there exists an \mathfrak{L} -arrow $e: X \to U$.

3

Theorem (Universality)

Let U be the Fraïssé limit of \mathfrak{S} . Then for every $X \in Obj(\mathfrak{L})$ there exists an \mathfrak{L} -arrow $e: X \to U$.

Theorem (Almost homogeneity)

Let U be the Fraïssé limit of \mathfrak{S} . Then for every \mathfrak{S} -arrow $f : x \to y$, for every \mathfrak{L} -arrows $e_x : x \to U$, $e_y : y \to U$, for every $\varepsilon > 0$ there exists an automorphism $h : U \to U$ satisfying

 $\varrho(h \circ e_x, e_y \circ f) < \varepsilon.$

Theorem (Universality)

Let U be the Fraïssé limit of \mathfrak{S} . Then for every $X \in Obj(\mathfrak{L})$ there exists an \mathfrak{L} -arrow $e: X \to U$.

Theorem (Almost homogeneity)

Let U be the Fraïssé limit of \mathfrak{S} . Then for every \mathfrak{S} -arrow $f : x \to y$, for every \mathfrak{L} -arrows $e_x : x \to U$, $e_y : y \to U$, for every $\varepsilon > 0$ there exists an automorphism $h : U \to U$ satisfying

$$\varrho(h \circ e_x, e_y \circ f) < \varepsilon.$$

Remark

The Urysohn space is homogeneous with respect to finite sets, while the Gurariĭ space is not homogeneous with respect to finite-dimensional spaces.

3

イロト 不得 トイヨト イヨト

Let \mathfrak{S} be the category whose objects are closed intervals [0, n] $(n \in \mathbb{N})$ and arrows are non-expansive surjections. More precisely, $f \in \mathfrak{S}([0, n], [0, m])$ iff f is a non-expansive surjection from [0, m] onto [0, n].

3

Let \mathfrak{S} be the category whose objects are closed intervals [0, n] $(n \in \mathbb{N})$ and arrows are non-expansive surjections. More precisely, $f \in \mathfrak{S}([0, n], [0, m])$ iff f is a non-expansive surjection from [0, m] onto [0, n].

Fact

 \mathfrak{S} is a Fraïssé category, although it fails the amalgamation property.

Let \mathfrak{S} be the category whose objects are closed intervals [0, n] $(n \in \mathbb{N})$ and arrows are non-expansive surjections. More precisely, $f \in \mathfrak{S}([0, n], [0, m])$ iff f is a non-expansive surjection from [0, m] onto [0, n].

Fact

 \mathfrak{S} is a Fraïssé category, although it fails the amalgamation property.

 \mathfrak{L} is the category of all nonempty *chainable continua* (a continuum = a compact metrizable connected space). The Fraïssé limit of \mathfrak{S} is the *pseudo-arc*.

Bad news

Fact

The category of finite metric spaces with isometric embeddings is not countably dominated.

3

< ロ > < 同 > < 回 > < 回 >

Bad news

Fact

The category of finite metric spaces with isometric embeddings is not countably dominated.

Fact

The category of finite-dimensional Banach spaces with linear isometric embeddings is not countably dominated.

3

Proposition

A separable Banach space G is linearly isometric to the Gurariĭ space if and only if

(G) For every finite-dimensional spaces X ⊆ Y, for every linear isometric embedding e: X → G, for every ε > 0 there exists an ε-isometric embedding f: Y → G such that ||f ↾ X − e|| < ε.</p>

(B) (A) (B) (A)

Definition

A measure on a category \mathfrak{K} is a function $\mu \colon \mathfrak{K} \to [0, +\infty]$ satisfying the following conditions:

3

Definition

A measure on a category \mathfrak{K} is a function $\mu \colon \mathfrak{K} \to [0, +\infty]$ satisfying the following conditions:

(M1) $\mu(id_x) = 0$ for every object *x*.

3

Definition

A measure on a category \mathfrak{K} is a function $\mu \colon \mathfrak{K} \to [0, +\infty]$ satisfying the following conditions:

(M1) $\mu(id_x) = 0$ for every object x.

(M2) $\mu(f \circ g) \leq \mu(f) + \mu(g)$ whenever $f \circ g$ is defined.

3

Definition

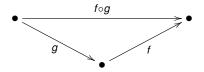
A measure on a category \mathfrak{K} is a function $\mu \colon \mathfrak{K} \to [0, +\infty]$ satisfying the following conditions:

(M1) $\mu(id_x) = 0$ for every object *x*.

(M2) $\mu(f \circ g) \leq \mu(f) + \mu(g)$ whenever $f \circ g$ is defined.

(M3) $\mu(g) \leq \mu(f \circ g) + \mu(f)$ whenever $f \circ g$ is defined.

A pair $\langle \mathfrak{K}, \mu \rangle$ will be called a measured category.



EN 4 EN

4 A N

Let $\mathfrak K$ be the category of metric spaces with non-expansive mappings. Then

$$\mu(f) = \log Lip(f^{-1})$$

defines a measure on \Re .

э

Let $\mathfrak K$ be the category of metric spaces with non-expansive mappings. Then

$$\mu(f) = \log Lip(f^{-1})$$

defines a measure on \Re .

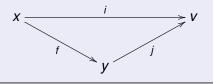
Example

Let $\mathfrak{K} = \langle X, X \times X \rangle$ be a quasi-ordered set, treated as a category such that $\mathfrak{K}(x, y) = \{\langle x, y \rangle\}$ for every $x, y \in X$. Then a measure on $\langle X, \leqslant \rangle$ is a pseudo-metric (we allow 0 for distinct points).

We assume that \mathfrak{S} is a measured category enriched over metric spaces.

A new axiom

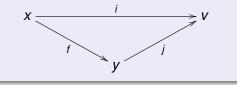
For every $\varepsilon > 0$ there is $\delta > 0$ such that whenever $f: x \to y$ satisfies $\mu(f) < \delta$ then there exist $i: x \to v, j: y \to v$ such that $\mu(i) = \mu(j) = 0$ and $\varrho(i, j \circ f) < \varepsilon$.



We assume that \mathfrak{S} is a measured category enriched over metric spaces.

A new axiom

For every $\varepsilon > 0$ there is $\delta > 0$ such that whenever $f: x \to y$ satisfies $\mu(f) < \delta$ then there exist $i: x \to v, j: y \to v$ such that $\mu(i) = \mu(j) = 0$ and $\varrho(i, j \circ f) < \varepsilon$.



Proposition

The category of finite-dimensional Banach spaces satisfies this axiom (with $\delta = \varepsilon$).

After adapting the other assumptions and axioms, we obtain the final notion of a Fraïssé category.

After adapting the other assumptions and axioms, we obtain the final notion of a Fraïssé category.

Theorem

The Urysohn space is the Fraïssé limit of the category of finite metric spaces.

Theorem

The Gurariĭ space is the Fraïssé limit of the category of finite-dimensional Banach spaces.

References

- W. Kubiś, Fraïssé sequences: category-theoretic approach to universal homogeneous structures, Annals of Pure and Applied Logic 165 (2014) 1755–1811.
- W. Kubiś, *Metric-enriched categories and approximate Fraïssé limits*, preprint, http://arxiv.org/abs/1210.6506.
- F. Cabello Sánchez, J. Garbulińska-Węgrzyn, W. Kubiś, Quasi-Banach spaces of almost universal disposition, Journal of Functional Analysis 267 (2014) 744–771.
- W. Kubiś, Banach-Mazur game played in partially ordered sets, to appear in Banach Center Publications, http://arxiv.org/abs/1505.01094.
- W. Kubiś, D. Mašulović, *Katětov functors*, to appear in Applied Categorical Structures, http://arxiv.org/abs/1412.1850.

3